BUKUAyo Raih Medali Emas Olimpiade Matematika SMA Pemahaman Konsep di Tokopedia βˆ™ Promo Pengguna Baru βˆ™ Cicilan 0% βˆ™ Kurir Instan. Beli BUKU Ayo Raih Medali Emas Olimpiade Matematika SMA Pemahaman Konsep di isti sabila shop. Soaldan pembahasan olimpiade matematika sma materi teori bilangan. Jejaring Soasial Yang Sangat Bermanfaat Bagi Guru dan Siswa 31 Ketentuan-Ketentuan Penilaian Menurut Permendikbud Nomor 104 Tahun 2014 30. Soal OSK SMA. Jika ditulis dalam basis 10 tentukan banyaknya angka bilangan 4. Persamaan dan Sistem Persamaan 17. Permainanlogika Matematika. Mengawali pelajaran dengan menyajikan sebuah puzzle atau permainan matematika sederhana dapat memberikan warna yang berbeda dalam proses KBM di kelas. Berikut ini adalah sebuah permasalahan dalam kehidupan sehari-hari yang berkaitan dengan materi matematika dasar. Suatu hari Anto datang ke rumah Pamannya. ο»ΏSoalOlimpiade Teori Bilangan. Latihan Soal Olimpiade Matematika SMA. Diketahui dan merupakan bilangan real positif yang memenuhi sistim persamaan berikut. Persamaan kuadrat melalui poin -3 -1 -1 -5 dan 2. Jika n bilangan asli buktikan bahwa habis dibagi 6 2. Beranda soal math soal soal teori bilangan soal soal teori bilangan. Banyaknya tripel bilangan bulatt π‘š 𝑛 𝑝 dengan 𝑝 prima yang memenuhi 𝑝2 𝑛2 3π‘šπ‘› 21𝑝 π‘š2 adalah. . Popular Posts Seperti yang telah kita ketahui sebelumnya, laju perubahan sesaat nilai fungsi merupakan limit dari laju perubahan rata-rata apabila nilai ... Dalam kehidupan sehari-hari, terdapat beberapa contoh masalah yang dapat diselesaikan dengan menggunakan konsep barisan dan deret aritmetik... Apa hubungan antara barisan geometri dan deret geometri? Jika U 1 , U 2 , U 3 , . . . U n , adalah suku-suku barisan geometri, maka U 1 +... Berikut latihan soal matematika untuk persiapan menghadapi ujian nasional ataupun menghadapi ujian sekolah tahun 2017. Jumlah soal ada seb... Pada topik sebelumnya, kalian telah belajar tentang konsep turunan menggunakan limit. Kalian sudah paham, kan? Pemahaman kalian pada topik ... Misalkan n bilangan asli, k konstanta, serta f dan g fungsi-fungsi yang mempunyai limit di c , maka Teorema 1 lim x β†’... HUBUNGAN ANTARA SUDUT PUSAT, PANJANG BUSUR, DAN LUAS JURING Pada topik sebelumnya, kalian telah mempelajari Teorema Sisa pada pembagian suku banyak oleh bentuk linear yaitu x - k dan ax... Kamu telah mengetahui bahwa suatu fungsi akan menghasilkan invers yang juga merupakan fungsi bijektif. Pada pembahasan kali ini, kita akan ... Pada topik sebelumnya, kalian telah mempelajari operasi pembagian pada suku banyak oleh bentuk linear. Apakah kalian masih ingat? Tentu iya... Materi dan contoh soal olimpiade matematika SMAMateri dan contoh soal olimpiade matematika SMAhineni frankyBagi siapapun yang telah memiliki ebook ini, anda diperbolehkan mengcopy, menyebarluaskan dan atau menggandakan, tetapi anda tidak diperkenankan mengubah sebagian atau seluruh isinya tanpa seizin dari penulis. Materi OSN Matematika SMA Kegiatan Olimpiade Sains Nasional yang diselenggarakan tiap tahun oleh Kemdikbud adalah sebuah ajang bergengsi untuk siswa yang salah satu tujuannya adalah untuk menumbuhkembangkan budaya kompetitif yang sehat di kalangan siswa SD/MI, SMP/MTs dan SMA/MA. Sebagai bahan persiapan menyongsong event Olimpiade Sains Nasional khususnya mapel Matematika jenjang SMA, berikut ini akan saya bagikan materi yang diujikan di dalam OSN matematika SMA. Materi soal-soal olimpiade matematika SMA biasanya bersumber pada buku-buku pelajaran, buku-buku penunjang dan bahan lain yang relevan. Penekanan soal OSN matematika SMA adalah pada aspek penalaran, pemecahan masalah dan komunikasi dalam matematika. Karakteristik soal OSN Matematika SMA adalah nonrutin dengan dasar teori yang diperlukan cukup dari teori yang diperoleh di SMP dan SMA saja. Akan tetapi untuk bisa menjawab soal, siswa memerlukan kematangan matematika dengan taraf lanjut berupa wawasan, kecermatan, kejelian, kecerdikan, cara berpikir dan pengalaman dengan matematika. Silabus materi olimpiade matematika SMA/MA mengacu kepada silabus International Mathematics Olympiad IMO dan dapat digolongkan ke dalam empat hal, yaitu 1. Teori Bilangan 2. Aljabar 3. Geometri 4. Kombinatorika Berikut ini beberapa teori-teori dalam matematika yang biasanya dipakai untuk menyelesaikan soal-soal OSN matematika SMA. 1. Ketaksamaan AM – GM dan QM – AM – GM – HM Ketaksamaan AM – GM merupakan ketaksamaan yang paling sering digunakan dalam olimpiade matematika SMA. AM kepanjangannya adalah Arithmetic Means atau rata-rata aritmatika, dan GM kepanjangannya adalah Geometric Means atau rata-rata geometris. Sifat ketaksamaan Jika x dan y merupakan bilangan real positif, maka berlaku ketaksamaan Kesamaan didapat saat Ruas kiri merupakan AM dan ruas kanan merupakan GM. Kesamaan ini didapat dari sifat bahwa kuadrat dari suatu bilangan selalu positif. Berikut ini bukti ketaksamaan AM - GM untuk 2 bilangan Misal p dan q yang keduanya merupakan bilangan real positif. Karena kuadrat suatu bilangan selalu positif, maka kita dapat Terbukti. Selain ketaksamaan AM – GM, ada juga sifat ketaksamaan yang lebih luas, yaitu ketaksamaan QM – AM – GM – HM. QM merupakan singkatan dari quadratic means atau rata-rata kuadrat, dan HM merupakan singkatan dari harmonic means atau rata-rata harmonis. 2. Teorema Kecil Fermat Teorema Fermat adalah teori matematika yang juga sering dipakai di dalam soal-soal OSN matematika SMA, yaitu pada bagian teori bilangan, Ada dua teorema Fermat yang paling dikenal, yaitu teorema kecil Fermat Fermat’s little theorem dan teorema terakhir Fermat Fermat’s last theorem. Tetapi yang sering dipakai dalam mengerjakan soal OSN matematika adalah teori yang pertama. Teorema kecil Fermat Misalkan a bilangan bulat positif dan sebuah bilangan prima, maka Atau biasa juga ditulis dengan dengan a bilangan bulat positif yang relatif prima terhadap bilangan prima p. Ini berarti selalu habis dibagi p dengan p merupakan bilangan prima. Teorema terakhir Fermat Teorema fermat yang terakhir menyatakan bahwa tidak ada bilangan asli yang memenuhi untuk teori fermat yang cukup kontroversial, karena menyisakan persoalan kepada matematikawan sedunia untuk membuktikan kebenarannya dan sampai saat ini belum ada pembuktian/penjelasan yang dapat diterima oleh masyarakat matematika dengan bahasa yang sederhana Contoh soal penggunaan teori kecil Fermat Hitunglah sisa dari dibagi 41 Menghitung Maka . 3. Induksi Matematika Induksi matematika merupakan suatu metode pembuktian dalam matematika untuk menyatakan suatu pernyataan adalah benar untuk semua bilangan asli. 4. Prinsip Keterbagian Materi tentang keterbagian tidak diajarkan dalam pelajaran rutin matematika SMA, padahal soal tentang ini biasanya sering dipakai di dalam event olimpiade matematika SMA baik di level OSK atau OSP, yakni pada bab teori bilangan. Keterbagian adalah sifat yang harus dimiliki suatu bilangan agar bilangan tersebut habis dibagi oleh bilangan yang lain. Makna habis’ dalam hal ini adalah bahwa jika dilakukan pembagian, maka hasilnya berupa bilangan bulat, bukan pecahan. Contoh 36 habis dibagi 12, hasilnya adalah 3. 36 tidak habis dibagi 5, karena menghasilkan 7 dan masih sisa 1. Jika a habis dibagi oleh b, atau dalam bahasa lain 'b membagi habis a', maka dapat dinyatakan dengan ba . Sifat-sifat keterbagian Misalkan a, b, c, k, dan m merupakan bilangan-bilangan bulat, maka berlaku aa a0 1a Jika a , maka a Jika ab , maka a dan b Jika a dan b , maka a Jika a dan a a , maka a Jika a dan b , maka ab jika a dan b relatif prima. Uji Habis Dibagi Berikut ini beberapa sifat suatu bilangan habis dibagi oleh bilangan yang lain. Misalkan N suatu bilangan bulat, maka berlaku - N akan habis dibagi oleh 2, jika bilangan tersebut genap. - N akan habis dibagi oleh 3, jika jumlah digit-digitnya habis dibagi 3. - N akan habis dibagi oleh 4, jika dua angka terakhir habis dibagi 4 - N akan habis dibagi oleh 5, jika angka terakhir angka satuan nya 0 atau 5 - N akan habis dibagi oleh 8, jika tiga angka terakhirnya habis dibagi 8 - N akan habis dibagi oleh 9, jika jumlah digit-digitnya habis dibagi 9 - N akan habis dibagi oleh 11, jika selisih jumlah bilangan pada posisi genap dengan pada posisi ganjil habis dibagi 11 - N akan habis dibagi oleh jika angka terakhirnya habis dibagi oleh . - N akan habis dibagi oleh jika angka terakhirnya habis dibagi oleh Contoh soal OSN matematika bab keterbagian Diketahui a679b merupakan bilangan bulat lima digit. Jika bilangan tersebut habis dibagi oleh 72, tentukan nilai dari a dan b. Canadian Mathematical Olympiad 1980 Penyelesaian Jelas 72 = 8Γ—9, serta 8 dan 9 saling relatif prima Maka bilangan tersebut habis dibagi 8 dan 9. Karena habis dibagi , maka tiga angka terakhir dari bilangan tersebut habis dibagi 9. Berarti, 79b habis dibagi 8. Ternyata yang memenuhi hanya b = 2. Berikutnya, a679b juga habis dibagi 9. Maka agar habis dibagi 9, jumlah digit-digitnya haruslah habis dibagi 9. Jumlah digitnya adalah a + 6 + 7 + 9 + 2 = 24 + a. Agar 24 + a habis dibagi 9, maka yang memenuhi hanya a = 3. 5. Prinsip Pengisian Tempat Pigeonhole Principle Prinsip ini sangat sederhana, namun sangat sering digunakan dalam pembuktian pernyataan matematika, terutama dalam bidang kombinatorika. Prinsip pengisian tempat atau pigeon hole principle sering disebut juga dengan prinsip rumah merpati atau prinsip rumah burung. Prinsip pengisian tempat atau Pigeonhole principle Jika terdapat n rumah lubang merpati dan ada sebanyak m merpati yang akan masuk ke rumah tersebut, dengan m > n, maka akan terdapat sedikitnya 1 lubang yang berisi lebih dari 1 merpati. Contoh 1. Buktikan bahwa untuk setiap 8 orang, akan terdapat minimal 2 orang yang lahir pada hari yang sama. Bukti Karena jumlah hari ada 7 dan jumlah orangnya ada 8 orang, maka akan terdapat minimal 2 orang yang lahir pada hari yang sama. 2. Di dalam sebuah kotak terdapat 5 pasang kaos kaki berwarna hitam, kuning, putih, biru, dan merah. Berapa banyak kaos kaki yang harus diambil dari dalam kotak tanpa melihat terlebih dahulu, agar dapat dipastikan akan didapat sepasang kaos kaki yang berwarna sama. Penyelesaian Agar didapat sepasang kaos kaki yang berwarna sama dari 5 warna kaos kaki, maka kita harus mengambil minimal 6 buah kaos kaki, sehingga dapat dipastikan akan didapat sepasang kaos kaki yang berwarna sama, sesuai dengan prinsip pengisian rumah burung. Seandainya kita hanya mengambil 5 buah kaos kaki, ada kemungkinan yang kita dapat masing-masing 1 kaos kaki berwarna hitam, kuning, putih, biru, dan merah, sehingga kita tidak mendapatkan sepasang kaos kaki yang berwarna sama. 6. Teorema Eratosthenes Teorema Erathosthenes adalah salah satu teorema yang sering dipakai dalam pembuktian teori bilangan terutama yang berkaitan dengan bilangan prima. Secara ringkas penggunaan Teorema Erathosthenes adalah untuk mempermudah menentukan suatu bilangan sembarang yang termasuk ke dalam bilangan prima atau komposit. Teorema Erathosthenes Suatu bilangan N adalah bilangan prima jika tidak ada bilangan prima p yang lebih kecil dari yang habis membagi N. Teorema ini sering juga disebut dengan Sieve of Eratosthenes. Contoh - Bilangan 43 merupakan bilangan prima, karena 2, 3, dan 5 tidak habis membagi 43. - Bilangan 2011 merupakan bilangan prima, karena 2, 3, 5, 7, 11, 13, 17, 19, 23, 39, 31, 37, 41, dan 43 tidak habis membagi 2011. - Bilangan 289 bukan bilangan prima karena jika kita membagi 289 dengan 2, 3, 5, 7, 11, 13, dan 17, ternyata 17 habis membagi 289 17 x 17 = 289. Catatan Pengertian bilangan prima adalah bilangan bulat positif yang hanya mempunyai dua faktor, yaitu 1 dan bilangan itu sendiri. 7. Persamaan Diophantine Persamaan Diophantine merupakan persamaan yang solusinya harus berada di himpunan bilangan bulat. Koefisien persamaan ini juga harus bilangan bulat. Sebagai contoh, Persamaan Diophantine diperkenalkan oleh matematikawan Yunani bernama Diophantus. Persamaan diophantine adalah persamaan bersuku banyak ax+by = c, di mana a, b, dan c adalah bilangan-bilangan bulat. Contoh Persamaan diophantine ax+by=c 2x+4y= 26. Persamaan linear diophantine ax+by= c mempunyai penyelesaian jika dan hanya jika gcd a,b membagi c. Bukti Bisa dilihat di GCD algoritma Eulid. Di sana dinyatakan bahwa ax+by = \text{gcd a,b} . Jadi, c merupakan kelipatan dari gcd a,b. Contoh Soal Tentukan semua bilangan bulat yang memenuhi persamaan berikut 15x+ 6y=189 Penyelesaian Menentukan nilai gcd-nya 15 = 6 x 2 + 3 dan 6 = 3 x 2 + 0. Sisa terakhir adalah gcd-nya. Jadi, gcd 15,6 = 3. Jelas 189 itu habis dibagi 3. Atau biasa ditulis 3 189. Artinya, persamaan itu punya solusi x dan y. 3 = 15 - 6 x 2 3 = 1 x 15 - 2 x 6 dikali 63 189 = 63 x 15 - 126 x 6 Jadi ditemukan 1 solusi, yaitu x = 63 dan y = -126 lihat bentuk gcda,b=ax +by. Menemukan semua solusi Tentukan gradien m= -15/6 = -5/2. Jelas bahwa jika suatu titik ditambah dengan gradien, maka hasilnya adalah bilangan bulat juga. Jadi didapat semua solusi dalam bentuk parameter k y = -126 - 5 k x = 63 + 2k, untuk k adalah semua bilangan bulat. Masukkan sembarang bilangan k, misalnya k= 30. Maka y = -126 + = 24 dan x = 63 - = 3. Jadi persamaannya menjadi y = 24 + 5k dan x = 3 - 2k, untuk k sebarang bilangan bulat. Namun tidak semua persamaan Diophantine mempunyai solusi. Contoh Tentukan semua bilangan bulat x dan y yang memenuhi persamaan berikut 15x+ 6y=190. Penyelesaian Menentukan nilai gcdnya gcd 15,6 = 3. Jelas 190 tidak habis dibagi 3. Jadi persamaan di atas tidak mempunyai solusi untuk semua bilangan bulat x dan y. 8. Teorema Dasar Aritmatika Teorema dasar aritmatika menyatakan bahwa bilangan bulat yang lebih besar dari 1 merupakan bilangan prima atau dapat dibentuk dengan mengalikan beberapa bilangan prima sekaligus. Contoh 2 adalah bilangan prima 3 adalah bilangan prima 4 = 2 x 2 5 adalah bilangan prima 18 = 2 x 3 x 3 100 = 2 x 2 x 5 x 5 208 = 2 x 2 x 2 x 2 x 13 Jadi, setiap bilangan bulat yang lebih besar dari 1 pasti merupakan bilangan prima atau dapat dinyatakan dalam bentuk perkalian beberapa bilangan prima. Demikianlah beberapa teorema dan rumus-rumus matematika yang berkenaan dengan materi OSN matematika SMA. Beberapa yang saya bagikan di atas terutama adalah untuk mengenalkan tentang tipe soal bab teori bilangan yang secara eksplisit tidak diajarkan secara langsung di bangku SMA. Selamat belajar dan terus berlatih, karena kunci kesuksesan mengerjakan tipe-tipe soal OSN adalah latihan yang berulang dan rutin untuk tipe soal sejenis. Terima kasih sudah berkunjung dan membaca Materi OSN Matematika SMA, semoga ada manfaat yang bisa diambil. Salam. Materi Dasar Olimpiade Matematika SMA, Teori Bilangan Published 23 Maret, 2008 matematika , Tutorial 61 Comments Iklan Baris Jasa Edit Warna Background Pas Foto, ganti pakaian di pas foto ke jas/kemeja. Murah , mulai dari 15 ribu rupiah saja. Minat WhatsApp ke nomer 08 sebelas 8035506 Download soal dan solusi Olimpiade matematika SMA tingkat kabupaten TEORI BILANGAN UJI HABIS DIBAGI a. Suatu bilangan habis dibagi 2^n apabila n digit terakhir dari bilangan tersebut habis dibagi 2^n Contoh 134576 habis dibagi 8 = 2^3, sebab 576 habis dibagi 8 576 8 = 72 4971328 habis dibagi 16 = 2^4 sebab 1328 habis dibagi 16 b. Suatu bilangan habis dibagi 5 apabila digit terakhir dari bilangan tersebut adalah 0 atau 5 Contoh 67585 dan 457830 adalah bilangan-bilangan yang habis dibagi 5. c. Suatu bilangan habis dibagi 3 apabila jumlah digit bilangan tersebut habis dibagi 3. Contoh 356535 habis dibagi 3 sebab 3 + 5 + 6 + 5 + 3 + 5 = 27 dan 27 habis dibagi 3. d. Suatu bilangan habis dibagi 9 apabila jumlah digit bilangan tersebut habis dibagi 9. Contoh 23652 habis dibagi 9 sebab 2 + 3 + 6 + 5 + 2 = 18 dan 18 habis dibagi 9. e. Suatu bilangan habis dibagi 11 apabila selisih antara jumlah digit dari bilangan tersebut pada posisi ganjil dengan jumlah digit dari bilangan tersebut pada posisi genap habis dibagi 11. Contoh 945351 habis dibagi 11 sebab 9 + 5 + 5 – 4 + 3 + 1 = 11 dan 11 habis dibagi 11. Contoh bilangan lain yang habis dibagi 11 adalah 53713 dan 245784. 2. Jika suatu bilangan habis dibagi a dan juga habis dibagi b, maka bilangan tersebut akan habis dibagi ab dengan syarat a dan b relatif prima. Berlaku sebaliknya. Contoh 36 habis dibagi 4 dan 3, maka 36 akan habis dibagi 12. 3. Misalkan N jika dibagi p akan bersisa r. Dalam bentuk persamaan N = pq + r dengan p menyatakan pembagi, q menyatakan hasil bagi dan r menyatakan sisa. Persamaan di atas sering pula ditulis N=r mod p 4. Kuadrat suatu bilangan bulat bulat, habis dibagi 4 atau bersisa 1 jika dibagi 4. maka suatu bilangan bulat yang bersisa 2 atau 3 jika dibagi 4, bukanlah bilangan kuadrat. 5. Angka satuan dari bilangan kuadrat adalah 0, 1, 4, 5, 6, 9. 6. Bilangan pangkat tiga kubik jika dibagi 7 akan bersisa 0, 1 atau 6. 7. Dua bilangan dikatakan prima relatif, jika faktor persekutuan terbesarnya FPB sama dengan 1. Contoh 26 dan 47 adalah prima relatif sebab FPB 26 dan 47 ditulis FPB26,47 = 1

materi teori bilangan olimpiade matematika sma